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|. INTRODUCTION

Deep Learning (DL) has emerged as a family of powerful machine
learning models with superior classification performance in Al applications
to improve diagnosis [1], classification, and prediction of clinical outcome
[2]. This can be attributed to the deep hierarchical structure that can
effectively capture relevant high-level abstractions and characterize training
data very well in a layer-by-layer manner [3]. It has been mentioned that deep
neural networks are forming an efficient internal representation of the
learning problem. Still, it is unclear how this competent representation is
distributed layer-wise and how it arises from learning [4]. This lack of
transparency in the training process often causes crucial trust-related
problems in critical application areas such as health care where validation is
essential. A vital component of an Al system is the ability to explain the
decisions made by it and the process through which they are made. These
explanations offer an insight into why a particular action has been chosen.

Convolutional Neural Networks (CNNs) are amongst the most prevalent
architectures for deep learning (DL), that empower big data feature extraction
with robustness and accurateness. They effectively draw out from low-level
input data to high-level abstraction features due to the benefit of a massive
number of samples. However, due to inadequate information or complexity in

the input feature, data may be ambiguous or vague which is mostly considered



as data ambiguity [5]. Performance of CNNs in emotion understanding from
video clips which have essential syntactic, semantic, and visual ambiguity is
insufficient. CNN is a totally deterministic system used in a ‘‘black-box’’
behavior that impossible to manipulate data ambiguity [6].

Fuzzy inference system (FIS) is an effective mechanism for modeling
human perception and reasoning [7]. The mathematical framework for
ambiguous data processing may be provided by the possibility theory of fuzzy
logic. Numerical computations performed by fuzzy logic using linguistic
labels and fuzzy degrees of membership, which are represented as degrees of
truth [6]. Humans could easily interpret the feature extraction and the reasoning
process from fuzzy rules and fuzzy inference. Nevertheless, fuzzy rules are
needed to determine by human experts, and the learning capability of fuzzy
systems is deficient. By incorporating fuzzy logic with neural network, neuro-
fuzzy networks can automatically learn the fuzzy membership functions [8].
Therefore, the fuzzy system parameter could be obtained from a large volume
of training data.

Today, throughout the era of the Internet, and with the explosion of social
media, it is imperative to dig into key and relevant knowledge from the
multitude of data available in it. These usually come in the form of text and
express the reader's love for content such as goods, utilities, books, hotels,
etc. Text is a good source for sharing your opinions, emotions, and feelings.

Languages are not only used for communication, but they also convey the



